Rapid Prototype for Static Mixers in Water Treatment

C2D Solutions Pte Ltd Concepts To Design Solutions

Overview of C2D

C2D Solutions Pte Ltd is a holistic knowledge-based engineering solutions provider with a wealth of experience. We are committed to deliver the most optimal solution based on sound engineering principles.

Problem Statement

Static mixers are an integral part of all water treatment and process facilities. Static mixers, as the name suggests, have no dynamic components and thus requires little or no maintenance. Any application where dosed chemicals have to be mixed effectively with minimum mechanical interface requires the presence of a static mixer. Well designed static mixer should offer good mixing while introducing minimal pressure losses.

Inline Static Mixer Open Channel Static Mixer Challenge **ANSYS ANSYS** The challenge of designing static mixers lies in the **Patent Pending**

0.80 0.77 0.74 0.70 0.67

0.64

0.61

0.58 0.54

trade-off between effective mixing and head loss across the mixer. A very rudimentary mixer with sufficient baffles obstructing and diverting the flow will provide reasonable mixing, but the resulting head loss will be extremely high. The tasks of designing a mixer that delivers good mixing while pressure loss requires maintaining a low conceptualizing and testing various prototypes. This largely iterative process if done physically can be very impractical from a time and cost perspective.

Solution

In order to enable rapid prototyping, various conceptualized designs were first modelled using Computational Fluid Dynamics (CFD). After iterative refinement using CFD, the most promising designs for the Inline and Open Channel Mixers were selected. The prototype models of the selected designs were then fabricated and validated experimentally.

Results

The rapid prototyping using CFD proved highly time and cost effective. The computed pressure loss and mixing (represented by the downstream Coefficient of Variance, COV) results agreed very well with the experimental results of the prototypes. The validation of the CFD methodology also allows the development of an extended range of static mixers without the need for further experimental prototyping

22.40 19.60 16.80 14.00 11.20 8.40 5.60 2.80 0.00	L _X				4.20e-01 3.50e-01 2.80e-01 2.10e-01 1.40e-01 7.00e-02 0.00e+00	x-
Contours of dose1-ppm		Á	NSYS FL	Mar 12, 2010 UENT 12.1 (3d, pbns, spe, ske)	Contours of Velocity Magr	itude (mixture
		F				
Flow Velocity = 0.15m/s		Flow Velocity = 0.3m/s				
CFD	Expt.	CFD		Expt.		
45	40	178		120		
COV @ 1D Downstream						C
Flow Velocity = 0.15m/s		Flow Velocity = 0.3m/s				
CFD	Expt.	CFD		Expt.		
2.59%	Not Available	3.05%		1%		

4.90e-01			
4.20e-01			
3.50e-01			
2.80e-01			
2.10e-01			
1.40e-01	f		
7.00e-02	X		
0.00e+00			
Contours of Velocity Mag	nitude (mixture) (m/s)	ANSYS FLUENT 12.1 (3d,	Aug 12, 2010 pbns, vof, ske, transient
	Pressure Lo	oss (mmH2O)	
	Flow Velo	city = 0.2m/s	
	CFD	Expt.	
	17.8	12.6	

COV @ 1W Downstream				
Flow Velocity = 0.2m/s				
CFD	Expt.			
1.72%	Not Available			

©2012 C2D SOLUTIONS PTE LTD All Rights Reserved.

www.c2d.com.sg